FLAVONOIDS FROM Thymus algeriensis

R. Benkiniouar,¹ S. Rhouati,¹ A. Touil,¹ E. Seguin,² and E. Chosson²

Thymus algeriensis (Boiss. et Reut.) is an aromatic species of the Labiatae family growing in North Africa (endemic species) known as "zhitra" [1]. In Algerian folk medicine the leaves and flowering branches are used as condiment, stomachic, diaphoretic, antispasmodic specifically for whooping cough, stimulant for the blood circulation, and aphrodisiac [2].

Previously isolated constituents were essential oil [3, 4] and the flavonoids: taxifolin, eriodictyol, 5,6-dihydroxy-7-3',4'trimethoxyflavone, and 5,6,4'-trihydroxy-7,3'-dimethoxyflavone [5].

Aerial parts of flowering T. algeriensis were collected from the Jijel region (eastern of Algeria) in June 1998. A voucher specimen has been deposited in the herbarium of the laboratory of natural substances and organic synthesis, University of Constantine under No. 05/ 1998/ L.T.A/03.

Dried powder of aerial parts (85 g) of flowering T. algeriensis was extracted with 70% MeOH solution, which was concentrated to dryness under reduced pressure. The residue (20 g) was dissolved in dist. H₂O (100 mL) stored in the cold and filtered after 24 hrs. The filtrate was extracted successively with EtOAc (2 g) and *n*-BuOH (8 g).

After PC (Whatman® N1) tests with 15% AcOH (system Ia), 30% AcOH (system Ib), and BAW (*n*-BuOH-AcOH-H₂O, 4:1:5 top layer (system II)), the EtOAc and n-BuOH extracts were combined (10 g) and subjected to CC on polyamide MN-SC6 eluted with a gradient of toluene-MeOH with increasing polarity; 54 fractions of 100 mL were collected and analyzed by cellulose TLC in the above systems in which similar fractions were combined to get only 12 fractions.

By preparative PC (Whatman® 3MM) using the above solvent systems some compounds were isolated. Purification of each compound for spectral analysis was carried out over a Sephadex LH-20 column eluted with MeOH. Three flavonoids are well identified by chromatography behavior, spectral data, and by co-chromatography with an authentic sample when possible and confirmed by comparison with literature data [6, 7]. Compound 1 was identified by spectroscopic techniques (UVvisible, ¹H NMR, ¹³C NMR, DEPT, COSY, HMQC, and HMBC), while **2** and **3** were identified by UV-visible, ¹H NMR, and ¹³C NMR spectra and acid hydrolysis [6].

Compound **1**. C₁₉H₁₈O₇; mp 188–191°C; R_f 0.25 (system Ib), 0.95 (system II)

UV (λ_{max}, nm), MeOH: 338, 276, 240sh; +NaOH: 385sh, 329, 286; +AlCl₃: 366, 287, 260; +HCl: 363, 260, 287; +NaOAc: 336, 277; +H₃BO₃: 337, 275. Mass spectrum (ES APCI), m/z (I_{rel} , %): 358 [M]⁺ (10), 357 [M-1]⁺ (45), 343 [M-15]⁺ (100), 328 [M-2×15]⁺ (90), 313 [M-3×15]⁺ (92), 298 [M-4×15]⁺ (40).

¹H NMR (300 MHz, CDCl₃, δ, ppm, J/Hz): 12.68(1H, s, OH-5), 7.44 (1H, dd, J = 9, J = 2, H-6'), 7.25 (1H, d, J = 2, OMe), 3.85(3H, s, OMe).

¹³C NMR (75 MHz, CDCl₃): 183.68 (s, C-4), 165.04 (s, C-2), 159.82 (s, C-7), 154.28 (s, C-5), 154.11 (s, C-9), 153.36 (s, C-4'), 150.38 (s, C-3'), 133.68 (s, C-6), 124.79 (s, C-1'), 121.16 (d, C-6'), 112.21 (d, C-5'), 109.78 (d, C-2'), 107.19 (s, C-10), 105.48 (d, C-3), 91.68 (d, C-8), 61.95 (q, 6-OMe), 57.44 (q, 7-OMe), 57.21(q, 4'-OMe, 3'-OMe).

Compound 1 is identified as 5-hydroxy-6,7,3',4'-tetramethoxyflavone (5-desmethylsinensetin).

Compound **2**. $C_{27}H_{30}O_{16}$; mp 250–254°C; $R_f 0.61$ (system Ia), 0.22 (system II).

UV (λ_{max}, nm), MeOH: 356, 300sh, 265sh, 257; +NaOH: 407, 325, 272; + AlCl₃: 423, 350sh, 290sh, 275; +HCl: 390, 350, 285sh, 268; +NaOAc: 385, 271; +H₃BO₃: 378, 263.

UDC 547.972

¹⁾ Departement de chimie, Faculte des sciences, Universite Mentouri de Constantine, Route Ain El-Bey, 25000, Constantine, Algerie, tel/fax: 213 31 81 88 62, e-mail: benkiniouarrachid@yahoo.fr; 2) Laboratoire de pharmacognosie UFR de medecine et pharmacie, Rouen, France. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 267-268, May-June, 2007. Original article submitted March 15, 2006.

¹H NMR (250 MHz, CD₃OD, δ , ppm, J/Hz): 7.80 (1H, d, J = 2, H-2'), 7.75 (1H, dd, J = 9, J = 2, H-6'), 6.85 (1H, d, J = 9, H-5'), 6.3 (1H, d, J = 2, H-8), 6.20 (1H, d, J = 2, H-6), 5.12 (1H, d, J = 7, H-1" glucose), 4.55 (1H, d, br.s, H-1"rhamnose), 1.1 (3H, d, J = 6.2, H-6"rhamnose), 3.20 – 3.90 (10H, protons of rutinose).

¹³C-NMR (62.89 MHz, CD₃OD): 177.96 (C-4), 164.61(C-7), 161.55(C-5), 157.89(C-2),157.06(C-9), 148.39(C-4'), 144.41(C-3'), 134.18(C-3), 122.11(C-6'), 121.64(C-1'), 116.24(C-5'), 114.61 (C-2'), 104.17(C-10), 103.29(C-1''), 100.97(C-1'''), 98.51(C-6), 93.41(C-8), 76.72(C-5''), 75.76(C-3''), 74.27(C-2''), 72.47(C-4'''), 70.77(C-4''), 70.65(C-2''), 69.91(C-3'''), 68.27(C-5'''), 67.10(C-6''), 16.47 (C-6'''). Identified as quercetin-3-*O*-rutinoside.

Compound **3**. $C_{21}H_{20}O_{10}$; $R_f 0.25$ (system Ia), 0.45 (system II).

UV (λ_{max}, nm) MeOH: 349, 266sh, 255; +NaOH: 397, 285sh, 266; +AlCl₃: 421, 290sh, 272; +HCl: 390, 350, 290sh, 269; +NaOAc: 353, 258; +H₃BO₃: 374, 285sh, 259.

¹H NMR (300 MHz,CD₃OD, δ , ppm, J/Hz): 7.32 (1H, dd, J = 9, J = 2, H-6'), 7.31 (1H, d, J = 2, H-2'), 6.83 (1H, d, J = 9, H-5'), 6.66 (1H, d, J = 2, H-8), 6.52 (1H, s, H-3), 6.42 (1H, d, J = 2, H-6), 5.29 (1H, d, J = 2, H-1"rhamnose), 3.33 – 4.00(4H, rhamnose), 1.08 (3H, d, J = 6.5, H-6" rhamnose). Compound **3** is identified as luteolin-7-*O*-rhamnoside.

To the best of our knowledge, all these compounds are isolated from *T. algeriensis* for the first time, compound **1** was isolated from others species of *Thymus* [8–10] while compounds **2**, **3** are identified in *Thymus* genera for the first time.

ACKNOWLEDGMENT

Partial financial support by ANDRS (Agence Nationale pour le Developpement en Sante) and MESRES (Ministere de l'Enseignement Superieur et de la Recherche Scientifique) are gratefully acknowledged.

REFERENCES

- 1. P. Quezel and S. Santa, *Nouvelle Flore de ll'Algerie et des Regions Desertiques, Meridionales,* tome II, Edition CNRS, Paris, 1963.
- 2. L. Boulos, *Medicinal Plants of North Africa*, Reference Publications, Inc., Michigan, 1983.
- 3. Z. Houmani, S. Azzoudj, G. Naxakis, and M. Skoula, *Journal of Herbs, Spices and Medicinal Plants*, 9(2/3 and 4), 275-280, (2002).
- 4. B. Benjilali, M. Hammoumi, A. M'Hamedi, and H. Richard, *Sciences des Aliments*, 7, 275 (1987).
- 5. M. M. El-Domiaty, A. M. El-hafae, and M. M. Abdel-Aal, *Alexandria Journal of Pharmaceutical Sciences*, **11**, 13 (1997).
- 6. T. J. Mabry, K. R. Markham, and M. B. Tomas, *The Systematic Identification of Flavonoids*, Springer, New York, 1970.
- 7. J. B. Harborne and T. J. Mabry, *The Flavonoids: Advances in Research*, Chapman and Hall, London, 1982.
- 8. F. Ferreres, F. Tomas, F.A.T. Barberan, and L. Hernandez, Pl. Med. Phytother., XIX, No. 2, 89 (1985).
- 9. P.D. Marin, R.J. Grayer, G. C. Kite, and V. Matevski, *Biochemical Systematics and Ecology*, **31**, 1291 (2003).
- 10. L. M. Hernandez, F. A. Tomas-Barberan, and F. Tomas-Lorente, *Biochemical Systematics and Ecology*, **15**, 61 (1987).